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We examitie and dovelop technigues tor obtaining a few salectled
eigenvalues of the generalized eigenvalue problem Ax = ABx, where A
aricl 8 ace 1 x o, nongymmetric, banded complex matrices. One way of
obtaining the desired eigenvalues is 10 use a direct method to compute
all the eigenvatues. Direct methods are computationally intensive and
destray the sparsity of the matrices A and £. lterative methods, on the
other hand, maintain the sparsity of the matrices and compute only a
few eigenvalues. The ierative algorithms that we consider are the
Arnoldi and the Lancros methads. We use a shift and invert strategy to
increase the rate of convergence towards the desired eigenvalues. We
compare these two approaches for a model problem, which arises from
considering the linear stability of compressible boundary layers and
some other test problems. We present a general scheme to compute the
eigenvalues lying inside a "box" in the complex plane. We also outline
a procedure to separate the converged eigenvalues fram spurious
approximations, In addition, this procedure can also improve the
approximations to the eigenvalues of interest. Numerical results
obtained on a CRAY Y-MP are presented. £ 1993 Academic Press, Inc.

I, INTRODUCTION

Malik [ 127 considered the linear stability of compressible
boundary layers. The computational problem is to ascertain
the cigenvalue of a gencralized eigenvalue problem

Ax=A4A8x (1.1
that lies in a specified region in the complex plane and has
largest imaginary parl.

To derive (1.1), Malik [127] reduces the Navier-Stokes

equations to a system of linear ordinary dilferential
equations

2
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where, in three space dimensions, £, F, and G are 5x5
madrices and ¢ is the vector of the mean values of perturbed
velocities 7, #, and &, pressure f, and temperature 7. The
cquations are discretized by finite differences to obtain (L[ ).
If N+ 1 is the number of grid points, the matrices 4 and B
are SN x SN (4N x 4N in only two space variables, as used
in our numerical experiments) banded, complex, and
non-Hermitian. B is nonsingular, Further details on the
derivation of (1.1} and the stability problem can be found
in [127. Related results are given in [3].

In order to determine the eigenvalue controlling stability,
Malik [12] computes all the eigenvalues of (1.1). Qur
concern in the paper is to develop alternative methods
that compute the eigenvalues of interest given a box in the
complex plane in which they lie. The main method that we
discuss is based on Arnoldi’s iteration [2, 19] and a shift
and invert strategy [5, 7]. We also consider Lanczos-type
methods [8, 11] but, at least for our test problems, they
are slightly inferior to the Arnoldi methods. We test
these methods on the stability problem as well as some
other artificial probiems in which several eigenvalues are
required. All experiments are run on a single processor of a
CRAY Y-MP.

Before considering these iterative methods, we first show
in Section 2 how lo improve on the approach of [127] by
using LAPACK [t], the successor to LINPACK and
EISPACK.

2. QR-TYPE METHODS

The approach discussed in [12] was to form B~ '4 using
LU decomposition, followed by forward and back solves;
use EISPACK [9] to reduce B~'A4 1o Hessenberg form H;
then find all the eigenvalues of H by LR iteration. Although
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TABLE1
Time (Seconds) for Different Methods

N B4 Hessenberg reduction Eigenvalues Total time
Original code using LR

16 0.047 0.025 0.031 0.103

40 0286 (.333 0.329 0.948

60 0.64) 0.962 0.939 2.541
LAPACK and QR

15 0011 0016 0.082 0.10%

40 0.0861 0.205 0.724 0.990

60 0134 0.694 1.976 2.804
LAPACK and LR

6 0011 0.016 0031 0.058

40 0061 0.205 0.329 0.595

60 0134 0.6%4 0.939 1767

A and B are banded, B~ '4 is, in general, a full matrix. An
alternative to forming B~'4 is the QZ algorithm [147, but
it also does not preserve the bandwidth so we have not
considered it for this problem.

We now modifly the approach in [12] by replacing
EISPACK with LAPACK [1]. LAPACK is based on
“blocked™ matrices but the block sizes for cur banded
matrices are so small that no benefits are achieved by using
blocked code to obtain B~ 'A. But since B~'4 is a full
matrix, its reduction to Hessenberg form can be done
efficiently by blocking. LAPACK is then used to compute
the cigenvalues of the reduced matrix, but the best results
are achieved for block size equal to one. (The QR
implementation in LAPACK at the time we used it was
based on the block-multishift method, but this may change
in later versions.) Table I compares timings on a single pro-
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FIG. 1.

cessor of a CRAY Y-MP for the original code of [12] and
the LAPACK modification. This is for a two-dimensional
problem so that the sizes of the matrices are 4N. Although
the times for forming B~'A and the Hessenberg reduction
are reduced considerably by using LAPACK, the eigenvalue
computation times increase. This is due to the fact that the
QR iteration is roughly twice as slow as LR. The last part
of the table shows the times if QR is replaced by the original
LR code.

There is a further improvement that can be made in com-
puting B~'A4. 4 and B are not only banded but have a good
deal of additional structure as shown in Fig, 1. In particular,
it is possible to find a permutation matrix P so that PYBP =
diag(8,, B,), where B, is diagonal and the semi-bandwidth
of &, is 3, which is less than the original £ This same
reordering must be applied to A, which destroys its block
tridiagonal form, but the time to compute B~'A4 is still
almost halved. This reduces the total times in TableI by
about 3%.

3. ARNOLDI’S METHOD

The Arnoldi algorithm [2, 197 for the standard eigen-
value problem

Cu=Au,

(3.1

starts with an initial vector v, with v, |, = | and computes
additional vectors v,, ..., ¥,, by

J
Vooa=Cv,— 3 hyv,
i=]
(32)

hj+ L= ”‘A"J-’+1 2

.
V=Y

forj =1,.,m—1.The h, in (3.2) are the inner products
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Structure of matrices 4 and 8 for two-dimensional flow.
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TABLE 11
Arnoidi for N =60, Shift =0.03975 4- i0.05

Unstable eigenvalue = 0.029118 + #0.002174

Steps Real part Imaginasy part
8 0029204 1.002006
10 0.029061 0.002255
13 0029121 0.002174
16 0.029118 0.002174

h;=(v;, Cv;} so that v, is orthogonal to all previous v,.
The k; define an mxm Hessenberg matrix H whose
cigenvalues approximate those of C, especially those in the
outer part of the spectrum of C. Thus, one wishes to choose
m sufficiently small so that the work in generating H and
computing its eigenvalues by the QR method is not
excessive, but a1 needs to be sufficiently large so that selected
eigenvalues of C are approximated accurately.

If one wishes to approximate eigenvalues of C that are not
in the outer part of the spectrum, it is common to use the
“shift and invert” strategy (S, 77. If A, is an approximation
to an eigenvalue of interest, then the shifted and inverted
problem is

(C— A0y " u=pum, (3.3)

where p=1/{A— Ay). Thus, eigenvalues of C close to 4,
correspond to eigenvalues p of (3.3) with large absolute
value, and one expects Arnoldi’s method to converge to
such eigenvalues.

In order to apply Arnoldi’s method to (3.3) for the
generalized eigenvalue problem (1.1}, we do not wish to
form C= B~'A4. Rather, (3.3) may be written as

(A—AiyB)~! Bu=yu (3.4)

and to apply Arnoldi’s method we do an LU decomposition
of 4--2,B once, and then each time (4—/i,8)"' Bv is
needed, we solve (4 — A, B)w= Bv by forward and back
solves. This is much more economical than forming the

TABLE 111
Tires (Seconds) for N =60

m 15 20 25 30 35
Arnoldi 0.046 0.058 0.075 0.087 0.099
Eigenvalues 0.009 0.017 0.024 0.035 0.050
Cumulative 0.055 D084 0.125 0.172 0234

matrix of (3.4) explicitly since it is usually full and also its
dimension is much larger than m.

If we wish to obtain eigenvalues of C in some box in the
complex plane and we have no further information about
the eigenvalues, then it is natural to use the center of the box
as the shift A, in {3.3). We now apply this strategy to the

~ stability problem. For this problem, Malik [13] has

suggested the box whose sides have lengths of approximately
0.1 and 0.12 and whose center is 4,=0.03975+ i0.05.
Table I1 shows the results of taking different numbers of
steps, m, in Arnoldi’s method applied to (3.4) for the
problem of the previous section with N = 60. The eigenvalue
of interest, as computed in the previous section, is shown at
the top of the table.

After eight Arnoldi steps, the approximated eigenvalue
has almost three digits of accuracy in the real part and two
in the imaginary part. After 16 steps, the ecigenvalue has
been approximated to the full accuracy shown. The time
tequired for 16 steps is approximately 0.06 s, a factor of
almost 30 less than that shown in Table I. However, there
are two serious and interconnected problems with this
approach: How do we choose the number of Arnoldi steps
and how can we be sure we have computed the correct
eigenvalue?

Since we do not know the proper number of Arnoldi
steps, m, in advance, we could start with a small m, do
Arnoldi’s method, increase m by some number, do addi-
tional Arnoldi steps, and so on, until the eigenvalue of
interest converges. The extra work involved is the computa-
tion of all eigenvalues of the m x m Hessenberg matrix at
each break point; this is not excessive until m becomes large.
For example, in Table 11T we give times for 15 up to 35
Arnoldi steps for the N = 60 problem, as well as the times to
compute the eigenvalues of the corresponding Hessenberg
matrices. In the third row, we give the cumulative times
under the assumption that we start with m =15 and then
increase m by five at ¢ach breakpoint. Thus, if we knew in
advance that m =35 was the proper number of steps, the
time would be 0.099 4 0.050 = 0.149, but having to obtain
the eigenvalues of all the small Hessenberg matrices adds
0.085. In any case, this is still much faster than computing all
the eigenvalues, as in the previous section.

4. LANCZ0S’ METHOD

We next consider the Lanczos algorithm [117] as an
alternative to Arnoldi’s method. Here, one penerates two
sets of vectors v; and w, that satisfy the recursions (for the
problem (3.1})

Cv,=y;, (v (+ayv,+Bv,., Po¥o =0, (4.1)

wh(= ﬁj—le*fi +°fjw_;? +7,%F s Bowd =0, (4.2)
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TABLE IV
Lanczos for N = 60, Shift =0.03975 4 i0.05

TABLE V
Case I: Shift =0.15 - i0.2

Unstable eigenvalue = 0.029118 + i0.002174

Eigenvalue # 1 2 3 4 5 6 7

Number of steps 13 22 18 13 14 21 28

Steps Real part Imaginary part
7 0.029635 0.001799
8 0.029139 0002180
9 0.029124 0.002194
10 0.029119 0.002174
11 0.029118 0.002174

for j=1,..,m. The g, §, and y determine the tridiagonal
matrix

% T
By 2 72
Tr= B: o (4.3)
. e Pt
Bt U

whose eigenvalues approximate the outermost eigenvalues
of C. The y, and B, in (4.3) are not uniquely determined and
there are several possibilities. Two are ;=1 and §,=7v,.
Our reported experiments use the first choice, although the
second gives similar results.

A zero fi, terminates (4.1) but the eigenvalues of 7, are
then cigenvalues of C. However, a zero y, is a problem that
can sometimes be dealt with by the “look-ahead” Lanczos
procedure [8, 18]. There are also problems in loss of
orthogonality; the vectors v, and w; are biorthogonal,
v¥w, =0, /# j, but rounding error destroys this property.
This can lead 1o Joss of accuracy in the computed cigen-
values as well as the appearance of “spurious” eigenvalues.

We now apply the Lanczos algorithm to the shifted and
inverted problem (3.4). As with Arnoldi’s method, we do
not form the matrix explicitly; A — 4, 8 is LU decomposed
and these factors are used to compute the matrix—vector
product (4 —74i,B) ! Bv. Results for the problem of
Table II are given in Table IV for the Lanczos algorithm.

Table IV shows that we get full accuracy in 11 Lanczos
steps as opposed to 16 for Arnoldi. However, the time
required by Lanczos is approximately 0.08 s as opposed to
0.06 for Arnoldi. This is due to the fact that each LancZos
iteration requires two forward and back solves as opposed
to only one for Arnoldi. Thus, on this problem, Arnoldi is
slightly more efficient,

5. ADDITIONAL TEST PROBLEMS

We next consider additional problems in which more
than a single eigenvalue in a specified region is desired.
These are artificial problems designed to test our algo-
rithms. We would hike the matrices A and B to again be
banded and we wish to generate A and B so that the
problem (1.1) has known eigenvalues. We do this by first
computing a banded block upper triangular matrix as the
Kronecker product ¢ of a 4 x4 circulant matrix (see, e.g.,
[16]) and a banded upper triangular matrix. The eigen-
values of a circulant matrix are easily computed and, thus,
the eigenvalues of C are known. We next choose any banded
complex matrix B and define the banded matrix A = BC.
Then C= B~ '4 has the same eigenvalues as (1.1).

By the above approach, we generate banded matrices A
and B of size 100 and consider rectangles in the complex
plane as illustrated in Fig. 2. In Casel, the rectangle
contains seven eigenvalues, whereas in Case I1, it contains
nine. In Case I, the center of the rectangle should be an
adequate shift, but this is not true in Case Il since the
rectangie is so flat. Hence, we subdivide it into four squares
and we will use the center of each square as a shift.

a | b
(0.9,-0.1) n 04,0010 40.8,-0.1}
(9.0,-0.1) {0.3.-0.13 2 a
e EXE IR IR A U R
1 .-
1 ol e Lo
0.0,-0.3 (0.8.-0.39
H ! ' 10.2,-0.3) (0.6,-0,3)
. )
{0.0,~0.3) (0.3,-0.3)

FIG. 2. Test cases: (a) Case [; (b) Case 1.
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TABLE VI
Case 11
Shift Eigenvalue # 1 23 4 5 6 789
0.1-—i0.2 Number of steps — — 292621 6 16 23 18
0.3-:i02 Number of steps 34 27 152425 — 31 — —
05-i02 Number of steps 2100—-——————
0.7—:02 Number of steps mwit? — —— — — — —

Table V shows the number of Arnoldi steps required to
obtain each eigenvalue in the rectangle to six-digit accuracy.
As expected, the number of steps is roughly proportional to
the distance of the eigenvalue from the shift.

Table VI shows corresponding results for Case IT using
the centers of the four small squares as shifts. The predomi-
nant concentration of the eigenvalues is in square 4, whose
center s 0.1 — (.2, and all the eigenvalues except 1 and 2 are
computed in no more than 30 steps. The centers of the other
squares are best for the eigenvalues closest to the shift
points, as expected.

The Lanczos algorithm was also applied to these two
cases. As with the previous stability problem, the Lanczos
algorithm tended to require fewer steps than Arnoldi but a
longer time.

6. A FILTERING PROCEDURE

We earlier mentioned the problem with the Lanczos algo-
rithm regarding the generation of spurious eigenvalues, and
we need a mechanism to separate “good” eigenvalues from
“bad” ones. The “bad” eigenvalues include undesired e¢igen-
values outside the user defined box as well as spurious ones.
“Good” eigenvalues are ones that have converged within the
box as well as ones that have not yet converged. We would
like to improve on the latter.

We consider a slightly enlarged box to account for any
approximations that are converging to desired cigenvalues
but are not yet themselves in the box, This serves as the first
test to separate “good” eigenvalues from “bad” ones. We
then define the following additional tests:

(1) Quotient rest. This test is based on an a posteriori
analysis for a computed eigenvalue (see Wilkinson [20]). If
the condition number of an eigenvalue is not too large, then
it is expected that the generalized Rayleigh quotient gives a
good approximation to the eigenvalue in question. For the
standard cigenvalue problem Cx = ix, the left eigenvector
is defined as y*C=2A4y*, the condition number as
Yy, i1x))./1¥y*x|, and the generalized Rayleigh quotient as
y*COx/y*x.

The left and the right eigenvectors corresponding to
A are approximated by solving (4—A,B)r=d and

APPRUXIMATIONS

INSIDE
BOX
LANCZOS | REPETITION | PASSED GOOD
TEST | EXGENYALUE
hinoLDt
REMAINING
EIGENYALUES
D PASSED RAYLEIGH
EIGENYALUE QUUTIENT
TEST
NOT
PASSED
CONVERG] LANCZOS
SPURIOUS « _ENCE
EIGENVALUE ~ PASSED TEST
PASSED EW_._"BE”.”ON PASSED _Goab
INING TEST EIGENVALUE
EIGENVALUES
D PASSED KAYLEIGH
EIGENVALUE 1 QUUTIENT
TEST
NOT
ASSED
SPU. S
EIGENVALUE

FIG. 3. Fillering scheme,

(A* — i¥ B*}{=d, where d i chosen as outlined in Golub
and QOrtega [10, p. 237]. We then transform these eigen-
vector approximations to the corresponding ones for the
standard eigenvalue problem. If the current approximate
eigenvalue and the generalized Rayleigh quotient are equal
up to a tolerance, we output the condition number and the
approximation.

(2) Convergence test. If we do not have a sufficiently
good approximation to the desired eigenvalue, the quotient
test will not be passed since eigenvectors are typically more
sensitive than eigenvalues. To improve the approximation
as well as detect spurious eigenvalues, the convergence test
uses the approximation as a shift for a few more steps, say,

TABLE Y11
Filtering Results Using Arnoldi’s Aigorithm for Case I

Eigenvalues filtered by

Steps Quotient test Convergence and quotient tests

9 — 1,4,5

13 1,4 3,5

14 1,4,5 3

16 1,4,5 3,6

17 1,4,5 2,36

i8 1,3,45 2,6

20 1,3,4,5,6 27
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5. The starting vector is obtained by solving Uy = z, where
zis a vector of all ones and U/ is from the LU decomposition
of A—A,B. (Perhaps using the LU decomposition
(4 —21,B) B~ would provide a better starting vector.) If
the shift is close to any of the five newly obtained
approximations, up to a tolerance, then it is classified as a
possibly “good” eigenvalue. However, if none of the
approximations are close (up to a tolerance), then the shift
is labeled as a spurious eigenvalue. For the Lanczos proce-
dure, the only approximations (from the five new ones)
checked for proximity to the shift are those that do not pass
the Repetition test. The possibly “good” eigenvalue still has
to pass the quotient test to be certified as “good.”

(3) Repetition test. For the Lanczos algorithm, Paige
{17] has shown that numerically multiple copies of an
eigenvalue imply convergence of that eigenvalue. Thus,
duplicated approximations are accepted as “good” eigen-
values if they are inside the box of interest,

The order in which these tests are applied is shown in the
schematic in Fig. 3. Further details are given in Nayar [157.

We illustrate the above “fijtering scheme” with Case I of
Fig. 2. Results are shown in Table VII. After nine steps of
Arnoldi’s algorithm, seven approximations are inside the
box of interest. The quotient test does not indicate con-
vergence for any of these, but the convergence test and, sub-
sequently, the quotient test identifies three approximations
as “good” eigenvalues. These three are the ones closest to
the original shift. After 14 steps, the three eigenvalues
nearest to the shiflt are obtained by the quotient test, and
another by the combination of the convergence and
quotient tests. All seven desired eigenvalues are obtained
after 20 steps, five by the quotient test and the remaining
two by the convergence and quotient tests.

We note that the convergence test can dramatically
improve the accuracy of an approximation. For example,
after nine steps, there are three approximations that are
moving towards eigenvalues of interest but have only about
four digits of accuracy. The convergence test applied to

TABLE YHI

Filtering Results Using Lanczos Algorithm for Case {

Eigenvalues filtered by

Repetition Convergence and Convergence and
Steps test Quotient test  repetition lests quotient tests
6 — — — 1,4
8 — — 4 L3
9 — 1,4 5 —
10 — 1,45 — —
12 — 1,4,5 — 36
13 —-— 1,4, 5 3 &
15 — 1,3,4,56 7 2

TABLE IX
Arnoldi Timings (Seconds) for Case I

Steps Arnoldi time Filiering time Toial time
20 0.037 0.089 0.126
23 0.053 0.077 0.130
28 0.060 0.057 0.117
30 0.066 4.057 0.123
35 0.086 0.057 0.143
40 0.108 0.057 0.165

these approximations gives new approximations that have
almost 12 digits of accuracy. However, the convergence test
is fairly expensive to apply. Furthermore, we do not really
need to achieve such a high degree of accuracy. In most
cases, we would like the approximations to pass the
quotient test directly since that requires relatively less
computation.

Table VIII shows corresponding results for the Lanczos
algorithm, again for Case 1. Two eigenvalues are obtained
after only six steps by the convergence test and, subse-
quently, the quotient test. After 10 steps, we obtain seven
approximations inside the box of interest. Three of these
pass the quotient test and the remaining ones are identified
as “bad” eigenvalues. After 12 steps, we still have seven
approximations inside the region of interest. However, the
accuracy has improved enough so that we are able to
identify five eigenvalues, three by the quotient test and the
others by the combination of the convergence and quotient
tests. All seven eigenvalues are obtained after 15 steps, one
by using the repetition test on the five approximations
obtained during the convergence test, another by the
convergence test, and the remaining ones by the guotient
test.

We next show in Table IX some timing results for
Arnoldi’s method for Case 1. The “Arnoldi time” is that time
required to do m steps of the algorithm and compute the
eigenvalues of the m x m Hessenberg matrix.

Table IX begins with 20 steps, the smallest number for
which all the desired eigenvalues are obtained. As the num-
ber of steps increases, the Arnoldi time increases but the

TABLE X

Lanczos Timings (Seconds) for Case [

Steps Lanczos tine Filtering time Total time
15 0.043 0.110 0.153
20 0.059 0.090 0.149
23 0.076 0,053 0.129
30 0.097 0.048 0.145
35 0.116 0.066 0.182
40 0.146 0.080 0.226
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filtering time decreases to a constant 0.057 s. The minimum
total time occurs for 28 steps. The decrease in the filtering
time is due to the fact that, for 20 steps, some of the eigen-
values are obtained by the quotient test and the remaining
ones by the combination of the convergence and the quotient
tests {see Table VII). For a larger number of steps, more
eigenvalues are obtained by the quotient test, which is less
expensive than the convergence test. For 28 or more steps,
all eigenvalues are obtained by the quotient test and the
filtering time remains constant thereafter.

Corresponding results for the Lanczos algorithm are
shown in Table X and are more variable due to the unpre-
dictable behavior of the repetition test. For 15 steps, five of
the eigenvalues are obtained by the quotient test, another
one by the convergence and quotient tests, and the last by
the repetition test on the five new approximations obtained
during the convergence test. For 20 steps, all the eigenvalues
are obtained by the quotient test. For 25 steps, numerical
multiplicity occurs in the approximations obtained using
the center of the rectangle as the shift. Then, two eigenvalues
are sorted by the repetition test while the remaining ones are
obtained by the quotient test. The lesser use of the quotient
test gives the minimum total. For more than 28 steps, the
filtering time starts increasing because of numerical multi-
plicity for eigenvalues other than those nearest to the shift.

The best Arnoldi time for Case I, 0.117 s for 28 steps in
Table IX, is slightly better than the best Lanczos time of
0.129 s for 25 steps in Table X. Due to the shift and invert
strategy, two forward and back solves are required for each
lanczos iteration, as opposed to only one for the Arnoldi
iteration. This is reflected in Tables IX and X, where the
Lanczos time is consistently higher than Arnoldi’s algo-
rithm for the same number of steps. The unpredictability of
the fitering results makes it hard to compare the computa-
tional complexity of the two algorithms. However, for the
original stability problem as well as other test cases, the
timing results for Arnoldi’s algorithm are better than for
the Lanczos algorithm. Further numerical experiments in
Nayar [[15] show that the iterative method times including
filtering are far superior to the direct method for larger
problem sizes.

7. CONCLUSIONS

We have shown that the computation of one or a few
eigenvalues in a specified region in the complex piane is
efficiently done by use of iterative methods with a shiit and
invert strategy. Experiments on a limited number of
problems showed that the Arnoldi iteration was somewhat

faster than the Lanczos method, although the latter used
fewer iterations. This conclusion also held after the addition
of a “filtering” test.
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